Answer to Some Selected Problems

UNIT 7

7.25 15 g

UNIT 8

8.32 Mass of carbon dioxide formed = 0.505 g

 CH_2-CH_3

- Mass of water formed = 0.0864 g
- % fo nitrogen = 568.33
- % of chlorine = 37.57 8.34
- % of sulphur = 19.66 8.35

UNIT 9

8.32	Mass of carbon dioxide formed = 0.505 g
	Mass of water formed = 0.0864 g
8.33	% fo nitrogen = 56
8.34	% of chlorine = 37.57
8.35	% of sulphur = 19.66
	UNIT 9
9.1	Due to the side reaction in termination step by the combination of two ${\rm \dot{C}H_3}$ free radicals.
9.1 9.2 9.3	(a) 2-Methyl-but-2-ene (b) Pent-1-ene-3-yne
	(c) Buta-1, 3-diene (d) 4-Phenylbut-1-ene
	(e) 2-Methylphenol (f) 5-(2-Methylpropyl)-decane
	(g) 4-Ethyldeca –1,5,8- triene
9.3	(a) (i) $CH_2 = CH - CH_2 - CH_3$ But-1-ene
	(ii) $CH_3 - CH_2 = CH - CH_3$ But-2-ene
	(iii) $CH_2 = C - CH_3$ 2-Methylpropene CH ₃
	(b) (i) $HC \equiv C - CH_2 - CH_2 - CH_3$ Pent-1-yne
	(ii) $CH_3 - C \equiv C - CH_2 - CH_3$ Pent-2-yne
	(iii) $CH_3 - CH - C \equiv CH$ 3-Methylbut-1-yne I CH_3
9.4	(i) Ethanal and propanal (ii) Butan-2-one and pentan-2-one
	(iii) Methanal and pentan-3-one (iv) Propanal and benzaldehyde
9.5	3-Ethylpent-2-ene
9.6	But-2-ene
9.7	4-Ethylhex-3-ene
	$CH_3 - CH_2 - C = CH - CH_2 - CH_3$

9.8 (a)
$$C_4H_{10}(g)+13/20_2(g) \xrightarrow{\Lambda} 4CO_2(g) + 5H_2O(g)$$

(b) $C_5H_{10}(g)+15/20_2(g) \xrightarrow{\Lambda} 5CO_2(g) + 5H_2O(g)$
(c) $C_5H_{10}(g) + 17/2 O_2(g) \xrightarrow{\Lambda} 6CO_2(g) + 5H_2O(g)$
(d) $C_7H_8(g) + 90_2(g) \xrightarrow{\Lambda} 7CO_2(g) + 4H_2O(g)$
9.9 $CH_3 CH_2 - CH_2 - CH_3 CH_3 H$
 $C = C C CH_2 - CH_2 - CH_3 CH_3 H$
 $C = C C CH_2 - CH_2 - CH_3 CH_3 H$
 $C = C C CH_2 - CH_2 - CH_3 CH_3 H$

cis-Hex-2-ene

trans-Hex-2-ene

The cis form will have higher boiling point due to more polar nature leading to stronger intermolecular dipole–dipole interaction, thus requiring more heat energy to separate them.

- 9.10 Due to resonance
- 9.11 Planar, conjugated ring system with delocalisation of (4n+2) electrons, where, n is an integer
- 9.12 Lack of delocalisation of $(4n + 2) \pi$ electrons in the cyclic system.
- 9.13 (i)

9.14

15 H attached to 1 carbons

4 H attached to 2 carbons

1 H attached to 3 carbons

- 9.15 More the branching in alkane, lower will be the boiling point.
- 9.16 Refer to addition reaction of HBr to unsymmetrical alkenes in the text.
- 9.17 $CH_3 C = O$ $CH_3 C = O$ CHO | | and | $CH_3 - C = O$ H - C = O CHO

All the three products cannot be obtained by any one of the Kekulé's structures. This shows that benzene is a resonance hybrid of the two resonating structures.

- 9.18 H C = C H > C₆H₆ > C₆H₁₄. Due to maximum *s* orbital character in enthyne (50 per cent) as compared to 33 per cent in benzene and 25 per cent in *n*-hexane.
- 9.19 Due to the presence of 6π electrons, benzene behaves as a rich source of electrons thus being easily attacked by reagents deficient in electrons.

(iii)

- 9.24 FeCl₃
- 9.25 Due to the formation of side products. For example, by starting with 1-bromopropane and 1-bromobutane, hexane and octane are the side products besides heptane.